Lesson 1-9: Exponents

The base a is raised to the power of n is equal to the multiplication of a, n times:

$$
\begin{array}{r}
a^{n}=a \times a \times \ldots \times a \\
n \text { times }
\end{array}
$$

a is the base and n is the exponent.

Examples

$$
\begin{aligned}
& 3^{1}=3 \\
& 3^{2}=3 \times 3=9 \\
& 3^{3}=3 \times 3 \times 3=27 \\
& 3^{4}=3 \times 3 \times 3 \times 3=81 \\
& 3^{5}=3 \times 3 \times 3 \times 3 \times 3=243
\end{aligned}
$$

Exponents rules and properties

Rule name	Rule	Example
Product rules	$a^{n} \cdot a^{m}=a^{n+m}$	$2^{3} \cdot 2^{4}=2^{3+4}=128$
	$a^{n} \cdot b^{n}=(a \cdot b)^{n}$	$3^{2} \cdot 4^{2}=(3 \cdot 4)^{2}=144$
Quotient rules	$a^{n} / a^{m}=a^{n-m}$	$2^{5} / 2^{3}=2^{5-3}=4$
	$a^{n} / b^{n}=(a / b)^{n}$	$4^{3} / 2^{3}=(4 / 2)^{3}=8$
Power rules	$\left(b^{n}\right)^{m}=b^{n \cdot m}$	$\left(2^{3}\right)^{2}=2^{3 \cdot 2}=64$
	${ }_{b} n^{m}=\mathrm{b}\left(n^{m}\right)$	${ }_{2} 3^{2}=2\left(3^{2}\right)=512$
	${ }^{m} \sqrt{ }\left(b^{n}\right)=b^{n / m}$	${ }^{2} \sqrt{ }\left(2^{6}\right)=2^{6 / 2}=8$
	$b^{1 / n}=n b$	$8^{1 / 3}=\sqrt{3}^{8}=2$
Negative exponents	$b^{-n}=1 / b^{n}$	$2^{-3}=1 / 2^{3}=0.125$
Zero rules	$b^{0}=1$	$5^{0}=1$
	$0^{n}=0$, for $n>0$	$0^{5}=0$
One rules	$b^{1}=b$	$5^{1}=5$
	$1^{n}=1$	$1^{5}=1$

