Lesson 1-9: Exponents

The base a is raised to the power of n is equal to the multiplication of a, n times:

$$a^n = a \times a \times ... \times a$$

n times

a is the base and n is the exponent.

Examples

$$3^{1} = 3$$

 $3^{2} = 3 \times 3 = 9$
 $3^{3} = 3 \times 3 \times 3 = 27$
 $3^{4} = 3 \times 3 \times 3 \times 3 = 81$
 $3^{5} = 3 \times 3 \times 3 \times 3 \times 3 = 243$

Exponents rules and properties

Rule name	Rule	Example
Product rules	$a^n \cdot a^m = a^{n+m}$	$2^3 \cdot 2^4 = 2^{3+4} = 128$
	$a^n \cdot b^n = (a \cdot b)^n$	$3^2 \cdot 4^2 = (3 \cdot 4)^2 = 144$
Quotient rules	$a^n / a^m = a^{n-m}$	$2^5 / 2^3 = 2^{5-3} = 4$
	$a^n / b^n = (a / b)^n$	$4^3 / 2^3 = (4/2)^3 = 8$
Power rules	$(b^n)^m = b^{n \cdot m}$	$(2^3)^2 = 2^{3 \cdot 2} = 64$
	$bn^m = b(n^m)$	$_{2}3^{2} = _{2}(3^{2}) = _{512}$
	$^{m}\sqrt{(b^{n})}=b^{n/m}$	$^{2}\sqrt{(2^{6})} = 2^{6/2} = 8$
	$b^{1/n} = {}^n \sqrt{b}$	$8^{1/3} = {}^{3}\sqrt{8} = 2$
Negative exponents	$b^{-n}=1/b^n$	$2^{-3} = 1/2^3 = 0.125$
Zero rules	$b^0 = 1$	$5^0 = 1$
	$0^n = 0$, for $n > 0$	$0^5 = 0$
One rules	$b^1 = b$	$5^1 = 5$
	$1^n = 1$	$1^5 = 1$